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(a) Network of protein—protein interactions in yeast. From Jeong et al. (b)
Regulatory interactions between E. coli genes. Courtesy of S. Ortiz, L. Rico,
and A. Valencia.
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FIGURE 2.1 A map of Konigsberg with the river Pregel and the representation of the
*Konigsberg bridge problem™ problem as a graph.

Taken from the book “analysis of biological networks”
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@ Mathematical Graph
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(a) Directed graph with 6 nodes and 9 edges. (b) An undirected graph with similar
topology. (c) By rewiring, we can obtain a new graph without changing the degrees
K.
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@ .~ Basic Notions for Graph and Network

O Graph: G ={V, E}, V, a set of vertices (nodes), E, a set of edges. (used in
Math Theory)

O Network: directed graph with weights for edges. (used in practice)

O Usually: the two concepts Graph and Network are used interchangeably.
O Directed or Undirected: a edge is a ordered or order-less pair of nodes.
O Neighbors: the nodes directly connected to the current node.

O Order and Size: the number of nodes and the number of edges.

O Degree: for undirected, the degree for a node is the number its edges; for
directed graph, two kinds of degree, the incoming degree is the number of

edges from other nodes, the outgoing degree is the number of edges to other
nodes.
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O Loop: an edge start from and end with the same node.
O Path: a sequence of edges leads one node to another node.

O Acyclic graph: a directed graph without cycles (a path starting and
ending at the same node).
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Do 2 R o 7
ISE 2 4 s
2 1@
3 ; 6
® 3 5@
1 / 1 6 7@
SRR
vertex 1 2 3 4 5 6 7
1 0O I 1 0 0 0 0 Li: ({1, 2}, {1,3})
2 1 0 1 O 0 0 0 Ly: (12,1}, {2,3})
AR AR P T 3 1 1 0 0 0 1 0 Ly: ({3, 1}, 13, 2}. {3, 6D
4 0 0 0 0 1 0 0 Li:({4,5))
5 0O 0 0 1 0 0 1 Ls:({5,4}.{5.7})
6 0O 0 1 0 0 0 0 Lg: ({6, 3})
7 0O 0 0 0 1 0 0 L::({7,5})
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O 431 (Degree Distribution) : the number (or probability) of nodes with the

degree k.
N(k) ~k or p(k)~k.

O #% Z% (Clustering Coefficient) : for a node, the ratio of the numbers of the
connections between its neighbors to the number of all possible connections.
Average CC over all nodes is a measurement of clustering.

e 2e. 1 &
C = | =—>YC
k(1) k. (k. 1) N <
2

O P KE (Average Path Length) : path length is the minimum numbers
(sum of weights) of edges from one node to another nodes. (%% E 1%, longest
path)

Zdu, ; 1S the path length from node 1 to node j.
Y (N -1)

Iij
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@ FuPE Ceentrality) fedr

mEHE (degree centrality) : 1Y SR ERE, fiE— AN SRERRE S .

Cy (v) = 29V

= n 1S the number of nodes.
n —_

A FEF T (betweenness centrality) : B SR E, HETy

sRRBIE T EE

CB (V) _ Z O (V)

s#V£teV Gst

a4 (closeness centrality) = 7 i 21 H &1 S RE AR ) 11E
iy B AR IR
Z d(v,t)

C V) = teV\v
P c (V) —
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O #FNM4% (Regular Networks)
O FfEHLMZ (Random Networks)

O NEAMZE (Small-World Networks)

O TCEMZ (Scale-Free Networks)

O Z2:M%% (Hierarchical Networks)
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http://networkx.lanl.gov/

Netwcl)rkxl

High productivity software for complex networks

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

Quick Example

>»» import networkx as nx

»»» G=nx.Graph()

»»» G.add_node("spam")
>»> G.add_edge(1,2)
>»> print(G.nodes(})
[1, 2, "spam']

>»> print(G.edges()})
[, 2]

Documentation

Tutorial Contents

start here a complete overview

Reference Search Page

quide to all functions and classes search the documentation

Examples General Index

using the library all funictions, classes, terms

Gallery Module Index

network drawings quick access to all documented modules
Features

- Standard graph-theoretic and statistical physics functions

Easy exchange of network algorithms between applications, disciplines, and platforms
« Many classic graphs and synthetic networks
+ Nodes and edges can be "anything” (e.g. time-series, text, images, XML records)

Current version: 1.8




@ Regular Network

B RS EDEHE FIKAT A
&, AN

P(k) = 5(k — K)

EREE s, FHBREK.

fENetworkXH', Hrandom_graphs.random_regular_graph(d, n)7
ERTDUVAE R — NS A0 A, BT RA AR E T R R P
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@ ER (Erdos-Rényi) Network

: HINAS T S I 1, AT AR AE

_N(N-J)
2

Cy

M B LI 2 M 2% 3 T ) B
P28 e RENLI 2% . ERIYIZS TS

Wﬂ ’ s A 2 IR ANV 0 A
- ' <k>k <k>
P() == ¢
ERFENLIEZ BN U LA Ay —28 “BaR7 Mk, XPERF)RA B Z L

RER P BN T S A R — X015 5. 7ENetworkXH, ] LLH
random_graphs.erdos_renyi_graph(n,p) 7iEE B — N EHBnANT A PR
HEIEERBENLE .
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@ WS (Watts-Strogatz) Small World Network

/NS R A R S O B S SOK RS AR S I /S BE3 7 (six degrees of
separation) ME&HIHE

MNTTSIRTT9G, S R
s SRS A MU HE,
IRIG, X EESR TN DI pBEAL
BEAT BT R (H OB E
SRR, XL FERE
HIIARR Y “RREERE” » KIE
SRR 1 2% ()7 25
K.

7ENetworkX+, 1 LLHrandom_graphs.watts_strogatz_graph(n, k, p) /7 vE4E ik —
MEAN TR BT RAKDE DU phE bl B WS/ E AR 2.

INHFMESHIR T, PSR, B RN E IR K,
%% i+ ¥ } & {EAE R AN R 2 8] ENAFAE — R AR I B AR XA — N E 8L
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@ BA (Barabasi-Albert) Scale Free Network

TCRFUERREE, 1 i A2 e 70 A

(power law)
] s P(k) ~ k7 or P(k) =ck 7
;. TehRREH & s
CACR AL y () =ox® A FEERE 2(x) = ce™

) R Ay, RISRUIRI T4, A
y(Ax) =c(Ax)* = 2%cx® = 1%y(X)
z(Ax) =ce ™ =c(e*)™*

HI# R BOE AR, JaH

7ENetworkXH', 1] LLHrandom_graphs.barabasi_albert_graph(n, m)
TNEAB— N EANN T R BRIIAmSL R BATCHRE M 4.
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Scale-free degree distribution in different networks . (a) Movie actors
(n=212250, (k) =28.78, y=2.3). (b) World wide web (n=325729, (k) =5.46,
vy=2.1). (c) Power grid (n =4941, (k) =2.67, y =4). From Barabasi and Albert
(Science, 1999, 286: 509) .
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A Bell Curve A Power Law Distribution

Very Many Nodes

/ with Only a Few Links

Most Nodes Have
the Same Number of Links

A Few Hubs with a

No Highly Large Number of Links

Connected Nodes

Number of Nodes with k Links
Number of Nodes with &k Links
-

FIGURE 1 Random and scale-free networks. The degree distribution of a random network follows a Poisson distribution close in shape to the

bell curve, telling us that most nodes have the same number of links, and that nodes with a large number of links don't exist (a). Thus, a ran-

dom network is similar to a national highway network in which the nodes are the cities and the links are the major highways connecting

them. Indeed, most cities are served by roughly the same number of highways (c). In contrast, the power-law degree distribution of a scale-
K /-(z free network predicts that most nodes have only a few links held together by a few highly connected hubs (b). Such a network is similar to
/= j@, the air traffic system, in which a large number of small airports are connected to each other by means of a few major hubs (d). After [1].
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File Edit Format Run Options Windows Help

FEREABIFE M. erbEtMLE. we R, pairERE)

‘mport networkx z2s nx
i rt matplotlib.pyplot zs5 plt

FE RIS

RG = nx.random graphs.random regular graph(3,20) #EREE20T TS, BT Pa8E3T4E
pos = nx.spectral layout (RG) *E}{—/I\“:Fﬁ%, Jj:tﬂ\ﬁ%ﬁﬁ T spectra;?ﬁ%}"j—ﬂ, J_EFE‘&%
nx.draw (RG,pos,with_labels=False,node_size = 30) #EotH | ERE R, '-rith_'_abe'_s;ﬁﬁ:
plt.show () *ﬂﬂ_'\@ﬁé_

#ERNERBAILIEE

ER = nx.random graphs.erdos renyi graph(20,0.2) B S 20 TS, RIEEo . 2 EEA0REY
pos = nx.shell layout (ER) #ESM—THRE, EATshe11FAT.

nx.draw (ER,pos,with labels=False,node size = 30)

plt.show()

FERwes R .
WS = nx.random graphs.watts_strogatz_graph(20,4,0.3) T E? D/I\-"I_'J'-5 ﬁjl\-"l-'v"-5 4T

pos = nx.circular layout (WS) FEN—THR, HREATcircularfi@5T
nx.draw (WS, pos,with labels=False,node size = 30) e E R
plt.show()

FERRRATATEIER

BA= nx.random graphs.barabasi_albert graph(100,1) #¥fin=20. m=18aTHREMLE
pos = nx. Spring_layout (BR) FE}{—/I\:FE%, Jktﬁi*;%ﬁﬁ T Springﬁ?%ﬁﬂ
nx.draw (BA,pos,with_labels=False,node_size = 30) #ieH|ER

plt.show()




L N Fig. 1. Complex network
; Q é models. (A) A schematic il-

i — lustration (left) of a scale-

a | }2’& IX_X‘]’% free network, whose degree

. distribution follows a power
mmes law. In such a network, a few
highly connected nodes, or

hubs (blue circles), play an

important role in keeping the

whole network together. A

typical configuration (right)

of a scale-free network with

256 nodes is also shown, ob-

36 tained using the scale-free
= model, which requires the
addition of a new node at

*Zl_\‘ each time such that existing
E nodes with higher degrees of
, connectivity have a higher
I@_ chance of being linked to the
new nodes (72). The nodes

5 are arranged in space with a
1;44‘ standard clustering algorithm
7% (30) to illustrate the absence
of an underlying modularity.

(B) Schematic illustration

ll‘% (left) of a manifestly modular
network made of four highly

EI’(] interlinked modules connect-
s ed to each other by a few
E links. This intuitive topology
PN does not have a scale-free
E} degree distribution, as most
of its nodes have a similar

number of links, and hubs are

absent. A standard clustering

algorithm uncovers the net-

work’s inherent modularity

(right) by partitioning a mod-

ular network of N = 256

nodes into the four isolated

structures built into the sys-

tem. (C) The hierarchical net-

Science (2002) 297: 1551 work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order

from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering

& 2 S the network’s underlying modularity. A detailed quantitative characterization of the three network
%}z % }V‘ models is available in (76).
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(b) n=1, N=25 (c) n=2, N=125

FIG. 1: The iterative construction leading to a hierarchical
network. Starting from a fully connected cluster of five nodes
shown in (a) (note that the diagonal nodes are also connected
— links not visible), we create four identical replicas, connect-
ing the peripheral nodes of each cluster to the central node of
the original cluster, obtaining a network of N' = 25 nodes (b).
In the next step we create four replicas of the obtained cluster,
and connect the peripheral nodes again, as shown in (c), to
the central node of the original module, obtaining a N = 125
node network. This process can be continued indefinitely.
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C(k) ~ k™
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FIG. 2: Scaling properties of the hierarchical model shown in Fig.lil (N = 57). (a) The numerically determined degree

distribution. The assymptotic scaling, with slope v = 1 + In5/In4, is shown as a dashed line. (b) The C(k) curve for the
model, demonstrating that it follows Eq. ) The open circles show C(k) for a scale-free model E| of the same size, illustrating
that it does not have a hierarchical architecture. (¢) The dependence of the clustering coefficient, C, on the size of the network
N. While for the hierarchical model C is independent of N (#), for the scale-free model C'(N) decreases rapidly (o).

arXiv:cond-mat/0206130v2
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